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Abstract Biochemistry has many examples of linear chain polymers, i.e., molecules
formed from a sequence of units from a finite set of possibilities; examples include pro-
teins, RNA, single-stranded DNA, and paired DNA. In the field of mass spectrometry,
it is useful to consider the idea of weighted alphabets, with a word inheriting weight
from its letters. We describe the distribution of the mass of these words in terms of a
simple recurrence relation, the general solution to that relation, and a canonical form
that explicitly describes both the exponential form of this distribution and its periodic
features, thus explaining a wave pattern that has been observed in protein mass dat-
abases. Further, we show that a pure exponential term dominates the distribution and
that there is exactly one such purely exponential term. Finally, we illustrate the use
of this theorem by describing a formula for the integer mass distribution of peptides
and we compare our theoretical results with mass distributions of human and yeast
peptides.
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1 Introduction

In chemistry and biology there are many examples of linear chain polymers, i.e., mol-
ecules formed from a sequence of units from a finite set of possibilities. Examples
include peptides/proteins, RNA, single-stranded DNA, and paired DNA. We want to
characterize patterns of the masses of such objects, considering an alphabet of build-
ing blocks (e.g. amino acids, in the case of peptides and proteins) and an assigned
mass function. Because the molecule is linear, the sequence of building blocks can be
thought of as a word over the alphabet.

We are particularly interested in the number C(M) of words that have a particular
weight M . Ideally we would like to solve this problem for arbitrary masses but, as we
shall see, we will restrict most of our analysis to integer masses.

However, we describe a recurrence relation that is applicable to real-valued masses:

C(M) =
d∑

j=1

C(M − m j ) (1)

where d is the number of objects in our alphabet and m j is the mass of the j th object.
In addition, by rescaling the masses, we can generalize all of our results to the case of
rational masses.

Next we solve this recurrence relation. The general solution is given by the follow-
ing theorem:

Theorem 1 (General Solution to Sequence Counting Problem) Consider a finite set
of masses m1, . . . , md and denote by C(M) the number of sequences of masses (i.e.
“words”) that have a total mass of M. Then C satisfies a mass recurrence relation
(Eq. 1). Furthermore, if the characteristic polynomial of this recurrence relation has
distinct roots then there exist real constants k, c0, . . . , ck, r0, . . . , rk, θ1, . . . , θk, ϕ1,

. . . , ϕk such that

C(M) = c0r M
0 +

k∑

j=1

c jr
M
j cos(2πθ j M + ϕ j ) (2)

and r0 ≥ r j > 0 for j = 1, . . . , k.

The characteristic polynomial of a recurrence relation will be discussed in the next
section. The rest of the paper is devoted to the proof of this theorem and related results,
including a generalization for the case where the characteristic polynomial does not
have distinct roots.

Our interest in this problem originated from the study of mass distributions of pep-
tide fragment ions [1] obtained using mass spectrometry [2,3]. In particular, we (and
others [4]) investigated the mass distribution of peptides for both biological and the-
oretical peptides [5]. This led to the observation that peptide density reaches a local
maximum approximately every 14 Da [4,5]. The results described in this paper explain
the source of this pattern, predict that periodic patterns are present for all non-trivial
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linear chain polymers, and describe the method by which all periodic terms can be
enumerated, given a fixed size mass unit (e.g. Daltons).

Finally, we note that computing the general form of the solution involving irrational
masses is a very interesting open problem.

2 Definitions and notations

We define an alphabet A as a finite ordered list of objects {a1, . . . , ad}.
Suppose A is an alphabet. Then mass(·) is a mass function of A if it is a function

from A to the positive real numbers.
Suppose A is an alphabet. Then mass(·) is an integer mass function of A if it is a

function from A to the positive integers.
Suppose A is an alphabet and mass(·) is a mass function of A. Then the pair O =

(A, mass(·)) is a collection of mass objects.
Suppose O = (A, mass(·)) is a collection of mass objects with alphabet A =

{a1, . . . , ad}. Then m1, . . . , md are the object masses of O if m j = mass(a j )

( j = 1, . . . , d).
Suppose m1, . . . , md are the object masses of the collection of mass objects O. Then

Eq. 1 is the mass recurrence relation for O.
Suppose also that m1 ≤ m2 ≤ · · · ≤ md are the object masses of the collection of

mass objects O. Then p is the characteristic polynomial of the recurrence relation for

O if p(z) = zmd − ∑d
j=1 zmd−m j .

Note that this definition of characteristic polynomial is the standard one for linear
difference equations of one variable.

Suppose O = (A, mass(·)) is a collection of mass objects. Then s is an
ordered sequence (or simply sequence) over O (or, equivalently, over A) if s is an
ordered set of letters, a1, a2, . . . , a� where ai ∈ A, i = 1, 2, . . . , �. Intuitively, we can
think of a sequence over O as a word formed using letters from the alphabet A.

Suppose O = (A, mass(·)) is a collection of mass objects and s = a1, a2 . . . a� is a
sequence. The mass of the sequence s is mass(s) = ∑length

i=1 (s)mass(ai )

Suppose O is a collection of mass objects. Then C is the sequence counting function
for O if C(M) = #{sequence s over O|mass(s) = M}, the number of sequences s over
O where the mass of s is M .

3 Mass recurrence relation

In this section we describe a recurrence relation for the sequence counting function.

Proposition 2 (Mass recurrence relation) Suppose C is the sequence counting func-
tion for a collection of mass objects O whose masses are m1 ≤ m2 ≤ · · · ≤ mk. Then
C satisfies the following mass recurrence relation of O with initial conditions:

C(M) =
⎧
⎨

⎩

0 when − mk < M < 0
1 when M = 0∑d

j=1 C(M − m j ) when M > 0
(3)
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Proof Assuming M > 0, we start with the definition for a sequence counting function
and consider the last letter of every sequence:

C(M) = # {sequence s over O|mass(O, s) = M}

=
d∑

j=1

#
{
sequence s over O|mass(O, s)= M and the last letter of s is a j ∈A

}

=
d∑

j=1

#
{
sequence s over O|mass(O, s) = M − m j

}

=
d∑

j=1

C(M − m j )

The last equality only holds for all M > 0 if we define C to be zero for the relevant
negative masses that arise. The initial condition related to mass 0 follows from the
idea that there is exactly one string of mass zero, namely the null string, φ. ��

4 Solving the recurrence relation

We next want to solve the recurrence relation. Note that while the recurrence relation
described in the previous theorem is applicable for real-valued (or even vector-valued)
masses, from now on we require integer masses.

Theorem 3 (General solution to a linear homogenous difference equation) Suppose
C satisfies the linear homogenous difference equation

anC(M + n) + an−1C(M + n − 1) + · · · + a0C(M + 0) = 0 (4)

for all positive integers M. Let p(x) = an xn + an−1xn−1 +· · ·+ a0x0 be the charac-
teristic polynomial for the difference equation. Suppose further that p has n distinct
roots, z1, . . . , zn. Then for any solution of Eq. 4 there exists a unique list of complex
numbers λ1, . . . , λn such that for all positive integers M,

C(M) =
n∑

j=1

λ j z
M
j (5)

Proof This is a key result in many texts on difference equations and a proof for it
can be found in, for example, [6–8]. Here is a sketch of the proof: for any root z
of p, the sequence zM satisfies Eq. 4. Therefore all linear combinations

∑n
j=1 λ j zM

j

satisfy Eq. 4. This form represents the general solution because (zM
j )a+1≤M≤a+n

1≤ j≤n
is a

Vandermonde matrix and is, therefore, invertible, giving us a unique solution. ��
The next lemma applies Theorem 3 (General solution to a linear homogenous dif-

ference equation) to sequence counting functions.
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Lemma 4 (Solving the recurrence relation—distinct roots) Let C be the sequence
counting function for a collection of mass objects with integer masses,O, and let p be
the characteristic polynomial of the mass recurrence relation of O. Suppose p is of
degree n and has n distinct roots, z1, . . . , zn. Then there exists a unique set of complex
numbers λ1, . . . , λn such that

C(M) =
n∑

j=1

λ j z
M
j .

Proof By Proposition 2 (Mass recurrence relation), C satisfies the mass recurrence
relation with initial conditions

C(M) =
{

0 when M ∈ (−n, 0)

1 when M = 0

(where n is the largest mass). Note that these initial conditions together with the mass
recurrence relation uniquely determine the function C on all positive integers. The
mass recurrence relation is a linear homogeneous difference equation with character-
istic polynomial p. Because p has distinct roots, we may apply Theorem 3 (General
solution to a linear homogenous difference equation) to obtain the desired conclusion.

��
Another form of this lemma which handles non-distinct roots can be found in [8].

5 Analysis of the solution of the recurrence relation

Now that we have a solution to the recurrence relation, we want to describe the form
of the solution in a way that is easy to interpret. In particular, we describe an exponen-
tial growth function overlaid with a periodic pattern. A pattern of this sort has been
described in [5,9].

Lemma 5 (Eigenvalues of conjugate pairs are conjugates) Let C be the sequence
counting function for a collection of mass objects O and let p be the characteristic
polynomial of the mass recurrence relation of O. Assume that p has distinct roots,
z1, . . . , zd and that C(M) = ∑d

j=1 λ j zM
j . Suppose that z j = z j ′ . Then λ j = λ j ′ .

Proof Note that the conjugate of every root of p is also a root of p. Let j ′ denote the
index such that z j = z j ′ for each j . (This is well-defined because p has distinct roots.)
Then, combined with the fact that C(M) is a real number, we have

d∑

j=1

λ j z
M
j = C(M) = C(M) =

d∑

j=1

λ j zM
j =

d∑

j ′=1

λ j z
M
j ′ =

d∑

j=1

λ j ′ z
M
j

However, by Lemma 4 (Solving the recurrence relation—distinct roots), we know that
the set of λ1, . . . , λd is unique. Therefore, λ j = λ j ′ . ��
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To simplify the statement of the next theorem, we need the following definition:
We say that that c j , θ j , and ϕ j satisfy standard conditions for j ∈ J if, for all j ∈ J
we have:

c j > 0,
0 < θ j ≤ 1

2 , and
−π < ϕ j ≤ π .

The terms c j , θ j , and ϕ j refer to the magnitude, period, and phase of periodic terms,
respectively, defined in the theorem below and used in later statements.

Theorem 6 (Explicit description of sequence counting function—simple form) Let
C be the sequence counting function for a collection of mass objects O and p be the
characteristic polynomial of the mass recurrence relation of O. Suppose p has distinct
roots. Then there exists real numbers c j , θ j , ϕ j , that satisfy the standard conditions
for 1 ≤ j ≤ k and there exist positive c0, r0, r1, . . . , rk such that

C(M) = c0r M
0 +

k∑

i=1

cir
M
i cos(2πθi M + ϕi ),

and

0 < r j for all j = 0, . . . , k.

Proof By Proposition 2 (Mass recurrence relation), we know that C satisfies the recur-
rence relation. Thus, we have changed the problem to one of solving the recurrence
relation, which is a linear difference equation. Let n be the order of p and z1, . . . , zn

be the roots of p. By Lemma 4 (Solving the recurrence relation—distinct roots) there
exist complex numbers λ1, . . . , λn , such that C(M) = ∑n

j=1 λ j zM
j . Note that 0 is

not a root since p(0) ≥ 1. Therefore, we may separate the list of roots into four sets:
positive roots R+, negative roots R−, complex roots in the upper half-plane Ru , and
complex roots in the lower half-plane Rl . We can now rewrite the expression of C(M)

as

C(M) =
∑

j :z j ∈R+
λ j z

M
j +

∑

j :z j ∈R−
λ j z

M
j +

∑

j :z j ∈Ru

λ j z
M
j +

∑

j :z j ∈Rl

λ j z
M
j .

Without loss of generality, we assume that the indices of the roots proceed in order
from R+, R−, Ru , and Rl . We will handle each summand separately.
Positive root:

Note that R+ has exactly one element by simple application of Descartes’ rule of
signs. Denote the single term in the corresponding sum as λ0zM

0 ; set r0 = z0 and
c0 = λ0. Thus,

∑

j :z j ∈R+
λ j z

M
j = c0r M

0

Negative roots:
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Define b− as the largest index of an element in R−. Let z j ∈ R−. We set the

constants for the j th term as r j = |z j |, c j = |λ j |, θ j = 1
2 , and ϕ j =

{
0 if λ j ≥ 0
π if λ j < 0

If we use this definition for an individual term in the summand we can rewrite the
summand as find

λ j z
M
j = λ j (−r j )

M

= c jr
M
j cos(2πθ j M + ϕ j )

Thus, the summand is

∑

j |z j ∈R−
λ j z

M
j =

b−∑

i=1

λ j (−r j )
M

=
b−∑

i=1

cir
M
j cos(2πθi M + ϕi )

Complex roots (upper and lower half-plane):
Define bu as the largest index j of an element in Ru . Let z j ∈ Ru . Note that, because

z j is a root of p and p is a polynomial over real numbers, the conjugate of z j , z j , is
also a root of p. Call the index of the conjugate root j ′; i.e. z j = z j ′ . Note also that
λ j = λ j ′ , by Lemma 5 (Eigenvalues of conjugate pairs are conjugates). Set c j = 2|λ j |
and set ϕ j such that λ j = 1

2 c j eiϕ j and −π < ϕ j < π . Also set r j = |z j | = |z j ′ | and
set θ j so that z j = r j ei2πθ j and 0 < 2πθ j < π . In other words, 0 < θ j < 1

2 . Now
we combine the term j from the first complex sum with the term j ′ from the second
sum to get

λ j z
M
j + λ j ′ z

M
j ′ = λ j z

M
j + λ j zM

j

= 1

2
c j e

iϕ j r M
j ei2πθ j M + 1

2
c j e

−iϕ j r M
j e−i2πθ j M

= 1

2
c jr

M
j

(
ei(2πθ j M+ϕ j ) + e−i(2πθ j M+ϕ j )

)

= c jr
M
j cos(2πθ j M + ϕ j )

Thus, the contribution from the complex roots (those that are not real) is

∑

j |z j ∈Ru

λ j z
M
j +

∑

j |z j ∈Rl

λ j z
M
j =

bu∑

j=b−+1

cir
M
j cos(2πθi M + ϕi ).

All roots:
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Combining the three parts we get

C(M) =
∑

j |z j ∈R+
λ j z

M
j +

∑

j |z j ∈R−
λ j z

M
j +

∑

j |z j ∈Ru

λ j z
M
j +

∑

j |z j ∈Rl

λ j z
M
j

= c0r M
0 +

b−∑

j=1

cir
M
j cos(2πθi M + ϕi ) +

bu∑

j=b−+1

cir
M
j cos(2πθi M + ϕi )

= c0r M
0 +

k∑

j=1

cir
M
j cos(2πθi M + ϕi ),

where k = bu .
To complete this proof, we need to verify that all of the constants are in the correct

ranges; i.e. that they satisfy the standard conditions. The c j ’s ( j > 0) are positive by
definition, as are the r j ’s. In addition, 0 < θ j ≤ 1

2 and −π < ϕ j ≤ π by definition,
for j = 1, 2, . . . , bu . Also, combining the above statements with Lemma 13 (Constant
c0 > 0) we know that c0 > 0. ��

6 Proof of maximality

The only difference between Theorem 6 (Explicit description of sequence counting
function—simple form), above, and Theorem 1 (General Solution to Sequence Count-
ing Problem) is that the latter also tells us that r0 ≥ r j for all j ≥ 1. This is the topic
of Theorem 14 (Maximality of positive root), found at the end of this section. The
rest of this section contains technical lemmas for use in the proof. The intuition of the
proof is that if the periodic terms dominate the real term then there must be a point at
which the result is negative, which is a contradiction of the fact that the function is a
counting function (i.e., must map non-negative integers to non-negative integers).

First, we show that the sum of cosines with rational period over a special set of
indices is zero.

Lemma 7 (Sum of rational period cosine is zero) Let θ be a positive rational number
given in reduced form by (a/b). Further, assume that b > 2. Let k and w be natural
numbers and ϕ a real number. Then

w+kb∑

m=w+1

cos(2πθm + ϕ) = 0.

Proof First, fix integers k and w and real number ϕ. Now note that a and b are rel-
atively prime. This means that for every value j = 0, 1, . . . , b − 1, there exists an
m ∈ [w + 1, w + b] such that am ≡ j mod b. Therefore,
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w+b∑

m=w+1

cos(2πθm + ϕ) =
w+b∑

m=w+1

Re(e2π iθm+ϕ)

= Re

(
w+b∑

m=w+1

e2π i a
b m+ϕ

)

= Re

(
ew+ϕ

b∑

m=1

e2π i m
b

)

Note that the last term is the sum of the bth roots of unity. Let ω1, . . . , ωb be the bth
roots of unity. We want to show that the sum of the bth roots of unity is always zero.
Note that these roots are all of the solutions to xb − 1 = 0. Thus,

b∏

j=1

(x − ω j ) = xb − 1

Of particular interest, however, is the term of order b − 1: its coefficient is the sum of
all of the roots. Since this coefficient is zero, then the sum of the roots is zero.

Finally, to prove our lemma, we need only add several terms that add to zero:

w+kb∑

m=w+1

cos(2πθm + ϕ) =
w+b∑

m=w+1

cos(2πθm + ϕ) +
w+2b∑

m=(w+b)+1

cos(2πθm + ϕ)

+ · · · +
w+kb∑

m=(w+(k−1)b)+1

cos(2πθm + ϕ)

= 0

��
For simplification in the rest of this section we need to add additional notation. We

denote the set of indexes of roots of the characteristic polynomial that have magnitude
r, { j |r j = r}, asMr . Also, we denote the periodic contribution of the i th root towards
C(M), ci cos(2πθi M + ϕi ), as ti (M). We refer to ti (M) as a parameterized cosine
function.

The following lemma states that the sum of ti (M) repeats a particular negative
value infinitely often, provided the Mr contains only rational values.

Lemma 8 (Functions with rational period repeat negative values) Suppose θ j is ratio-
nal for every j ∈ Mr and f (M) = ∑

j∈Mr
c j cos(2πθ j M + ϕ j ). Then either f is

identically zero on the integers or there exists δ > 0 and integers w and � such that
f (w + k�) = −δ for k = 1, 2, . . .

Proof Since θ j is rational, it can be represented by
a j
b j

(assume that this is reduced
form). Let � = lcm{b j | j ∈ Mr }, the least common multiple of the denominators
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of the cosine frequencies. First note that, because θ j� is an integer and t j (M) =
c j cos(2πθ j M + ϕ j ),

f (M + �) =
∑

j∈Mr

t j (M + �)

=
∑

j∈Mr

c j cos(2πθ j M + 2πθ j� + ϕ j )

=
∑

j∈Mr

c j cos(2πθ j M + ϕ j )

= f (M)

In other words, f is periodic with a period that divides �.
Now, by Lemma 7 (Sum of rational period cosine is zero) we know that, for all

integers w and k

w+kbi∑

M=w+1

t j (M) = 0.

In particular, because b j divides �, we know that for all j ,

w+�∑

M=w+1

t j (M) = 0

Therefore,

w+�∑

M=w+1

f (M) =
w+�∑

M=w+1

∑

j∈Mr

t j (M)

=
∑

j∈Mr

w+�∑

M=w+1

t j (M)

= 0

If f is identically zero on the integers then we are done. Otherwise, it follows that
there exists an integer, w, for which f (w) = −δ < 0. However, f is periodic with a
period that divides �. Therefore we know that w+�,w+2�, . . . is an infinite sequence
of integers such that f (w) = −δ < 0. ��

The following lemma extends the previous one by assuming that the members of
Mr are all related to each other by a complex constant.

Lemma 9 (Sum of rationally related cosines of irrational period is negative infinitely
often) Define f (M) = ∑

j∈Mr
t j (M), where t j is defined as previously. Suppose f is
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not identically zero on R and there exists an irrational number s such that for every
j ∈ Mr , the ratio

θ j
s is rational. Then there exists an irrational number α such that

f ( x
α
) has period 1. Further, there exists a real number ε > 0 and a nonempty open

interval I ⊂ [0, 1] such that x ∈ I ⇒ f ( x
α
) < −ε.

Proof For every j ∈ Mr , we define a j and b j as the reduced form fraction
a j
b j

= θ j
s .

Let � = lcm j∈Mr {b j } and choose α = s
�
. Define g(x) = f ( x

α
); we will show that g

is periodic with period 1.

g(x + 1) = f

(
x

α
+ 1

α

)

= f

(
x

α
+ �

s

)

=
∑

j∈Mr

c j cos

(
2πθ j

(
x

α
+ �

s

)
+ ϕ j

)

=
∑

j∈Mr

c j cos

(
2πθ j

( x

α

)
+ ϕ j + 2π

a j�

b j

)

Note that �
b j

is an integer by the definition of �. Therefore, the term 2π
a j �

b j
is an integral

multiple of 2π and can be ignored when inside the cosine function. Thus,

g(x + 1) =
∑

j∈Mr

c j cos
(

2πθ j

( x

α

)
+ ϕ j

)

= g(x)

In other words, f ( x
α
) has period 1.

Next we prove the second conclusion, that there exists a real number ε > 0 and a
nonempty open interval I ⊂ [0, 1] such that x ∈ I ⇒ f ( x

α
) < −ε. Recall that we

proved the first conclusion by showing that each cosine term in the sum defining g had
an integral number of cycles for x between 0 and 1. This implies

1∫

0

g(x)dx =
∑

j∈Mr

1∫

0

c j cos(2πθ j M + ϕ j )dx

= 0

However, because f is not identically zero, neither is g. This fact, combined with a zero
integral, means that g must be negative for some w ∈ (0, 1). Define ε = − 1

2 g(w).
Being a finite sum of continuous functions, g inherits continuity from the cosines.
Therefore, there exists an open interval I containing w such that x ∈ I ⇒ g(x) < −ε,
satisfying the second conclusion of the lemma. ��
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The following theorem will allow us to create a form of the previous lemmas without
restrictions on the members of Mr (see the subsequent lemma).

Theorem 10 (Infinite number of special integers) If the numbers 1, α1, α2, . . . , αk

are linearly independent over the rational numbers then for any k open non-empty
intervals I j ⊂ [0, 1], j = 1, . . . , k, the set

� = {n ∈ Z
+|nα j mod 1 ∈ I j ; j = 1, 2, . . . , k} is infinite.

Proof A more general version of this theorem can be found as Theorem 3.13 of [10],
where it is attributed to Hardy and Littlewood [11]. ��

Recall that that c j , θ j , and ϕ j satisfy standard conditions for j ∈ J if, for all j ∈ J
we have:

c j > 0,
0 < θ j ≤ 1

2 , and
−π < ϕ j ≤ π .

All of the previous lemmas in this section are used in this lemma. It states that the sum
of the ti (M) is less than a particular negative number infinitely often.

Lemma 11 (Sum is negative infinitely often) Assume that c j , θ j , and ϕ j satisfy the
standard conditions for j ∈ Mr . Define the periodic contribution ofMr towards C(M)

as

f (M) =
∑

i∈Mr

ci cos(2πθi M + ϕi )

=
∑

i∈Mr

ti (M)

Then either f is identically zero on integers or there exists δ > 0 and an infinite
sequence of positive integers M1, M2, . . . such that f (M�) < −δ for all � = 1, 2, . . ..

Proof It is easier to prove this in three steps:

1. Rational case: i ∈ Mr ⇒ θi ∈ Q

2. Irrational case: i ∈ Mr ⇒ θi /∈ Q

3. Mixed case: There exists i, j ∈ Mr such that θi ∈ Q and θ j /∈ Q

Case 1 Rational case: i ∈ Mr ⇒ θi ∈ Q.
Define f as f (M) = ∑

i∈Mr
ci cos(2πθi M + ϕi ). By Lemma 8 (Functions with

rational period repeat negative values) f is either zero on the integers or there exists
δ > 0 and integers w and � such that f (w + k�) = −δ for k = 1, 2, . . . Note that δ/2
and the sequence of integers w + �, w + 2�, . . . satisfy the conclusion of the theorem.

Case 2 Irrational case: i ∈ Mr ⇒ θi /∈ Q.
We can decomposeMr into k equivalence classes,M1

r , M
2
r , . . . , Mk

r , of indexes rep-
resenting frequencies that are linear combinations of each other over the rational num-
bers. Select a single member from each of the equivalence classes: i j ∈ M j

r and define
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s j = θi j . We can also decompose the function f to only sum the terms related to the j th
equivalence class: f j (M) = ∑

i∈M j
r

ti (M). Without loss of generality, each f j is not
identically zero. This allows us to apply Lemma 9 (Sum of rationally related cosines of
irrational period is negative infinitely often) to ascertain the existence of positive num-
bers α1, α2, . . . , αk , ε1, ε2, . . . , εk , and open sub-intervals of [0, 1] I1, I2, . . . , Ik

such that g j (x) = f j (
x
α j

) has period 1 and x ∈ I j ⇒ f j (
x
α j

) < −ε j . Note also that
1, α1, α2, . . . , αk are linearly independent over rational numbers. This allows us to
apply Theorem 10 (Infinite number of special integers) to state that the collection of
integers

� = {
n ∈ Z

+|nα j mod 1 ∈ I j ; j = 1, 2, . . . , k
}

is infinite. This list of integers is
the set we need in order to prove our claim.

To show this, we start with an n ∈ �.

f (n) =
k∑

j=1

f j (n)

=
k∑

j=1

g j (nα j )

By the definition of �, our selection of n means that, for each of j = 1, 2, . . .,
(nα j mod 1) ∈ I j . However, we defined I j so that g j (x) < −ε j for every x ∈ I j . In
particular, this will be true for nα j . If we now define

δ =
k∑

j=1

ε j ,

we have the following inequality:

f (n) =
k∑

j=1

g j (α j n)

<

k∑

j=1

−ε j

< −δ

Recall that this holds for every n ∈ �, an infinite set, thus proving this case.
Case 3 Mixed case: there exists i, j ∈ Mr such that θi ∈ Q and θ j /∈ Q.
We decomposeMr in the same way as in Case 2. However, exactly one of the decom-

positions includes indices of rational frequencies; call this member of the decompo-
sition M0

r . We decompose f as well:
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f (M) =
k∑

j=0

f j (M),

f j (M) =
∑

i∈M j
r

ti (M)

From Case 1 we know that there exists δ0 > 0 and integers w0 and �0 such that, for
every integer n,

f0(w0 + n�0) = −δ0.

Now we remove M0
r from the set of Mr (calling the result M′

r ) and rescale f :

f ′(x) = f (w0 + x�0) − f0(w0 + x�0).

Because f ′ only contains cosines of irrational period, it satisfies the conditions of Case
2; we conclude that there exists a positive number ε′ and an infinite set, �′ = {n′ ∈
Z

+| f ′(n′) < −ε′}
Select an n′ ∈ �′ and define

δ = ε0 + ε′

Let n = w0 + n′�0. Then

f (n) = f0(n) + f (n) − f0(n)

= f0(n) + f (w0 + n′�0) − f0(w0 + n′�0)

= f0(n) + f ′(n′)
< −ε0 + −ε′

< −δ

This completes our proof of Case 3 and, thus, the lemma. ��
Using the previous lemma we are now able to put exponential bounds on the size

of negative contributions of Eq. 2.

Lemma 12 (Sum of non-positive terms is negative infinitely often) Suppose f (M) =∑k
j=1 c jr M

j cos(2πθ j M + ϕ j ) where c j , θ j , and ϕ j satisfy the standard conditions
(found in definitions). Define rmax = max j {r j }. Then there exists δ > 0 and integers

M1 < M2 < · · · such that f (M�) < −δr M�
max for � = 1, 2, . . .

Proof (This lemma is identical to Lemma 11 (Sum is negative infinitely often), except
for the exponential term in both the definition of f and the conclusion.)

Recall the notation Mr = { j |r j = r}. If all indices j are in Mrmax then the theorem
follows directly from Lemma 11 (Sum is negative infinitely often), after factoring out
rmax; we will assume, therefore, that there are additional indices.
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Define r− = max j /∈Mrmax
{r j } and c− = max j /∈Mrmax

{c j } and note that the contri-
bution of all the maximal terms towards f is

∑

i∈Mrmax

r M
i ti (M) = r M

max

∑

i∈Mrmax

ti (M)

(where ti is the parameterized cosine function, as defined previously). By Lemma 11
(Sum is negative infinitely often) we know that there exists a δ > 0 and an infinite
sequence of integers, M1 < M2 < · · · such that

∑

j∈Mrmax

t j (M�) < −2δ � = 1, 2, . . .

Thus,

∑

j∈Mrmax

r M�

j t j (M�) = r M�
max

∑

j∈Mrmax

t j (M�) � = 1, 2, . . .

< −2r M�
maxδ

Therefore, given a real number u > 0, all integers M∗ > u from the sequence above
satisfy

∑
i∈Mrmax

r M
i ti (M) < −δr M∗

max. We select a particular u:

u = log
( c−

δ

)

log
(

rmax
r−

) + 1

By solving for (rmax)
u in the definition of u above we find that

(rmax)
u = c−

δ
ru−1− rmax

>
c−
δ

ru−

or

1 − δ

c−

(
rmax

r−

)u

< 0

We apply this inequality to get

f (M∗) =
∑

i /∈Mr

r M∗
i ti (M∗) +

∑

i∈Mr

r M∗
i ti (M∗)

< c−r M∗
− − 2δr M∗

max

= c−r M∗
−

(
1 − δ

c−

(
rmax

r−

)M∗)
− δr M∗

max
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= c−r M∗
−

(
1 − δ

c−

(
rmax

r−

)M∗−u (
rmax

r−

)u
)

− δr M∗
max

< c−r M∗
−

(
1 − δ

c−

(
rmax

r−

)u)
− δr M∗

max

< −δr M∗
max

��
The following lemma says that the coefficient of the purely exponential term is

positive and follows easily from the previous lemma.

Lemma 13 (Constant c0 > 0) Let C be the sequence counting function for O. Assume
that C is not identically zero. Suppose that C(M) = c0r M

0 +∑k
j=1 c jr M

j cos(2πθ j M+
ϕ j ) and that c j , θ j , and ϕ j satisfy the standard conditions. Then c0 > 0.

Proof By Lemma 12 (Sum of non-positive terms is negative infinitely often),
we know that there exists an integer M ′ and a real number δ > 0 such that∑k

i=1 cir
M ′ cos(2πθi M ′+ϕi )
i < −δr M ′

max. This implies that

C(M ′) = c0r M ′
0 +

k∑

j=1

c jr
M ′
j cos(2πθ j M ′ + ϕ j )

< c0r M ′
0

In particular, if c0 ≤ 0 then C(M ′) < 0. Since C is a counting function, this is a
contradiction arising from the assumption that c0 ≤ 0. Thus, c0 > 0. ��

The following theorem describes the closed form of a sequence counting function.
However, this theorem applies to the “simple form”; i.e. the case where the character-
istic polynomial has distinct roots. If it does not have distinct roots then the solution
involves the product of polynomials and exponentials in M inside the summation,
instead of simply exponentials inside the summation.

Theorem 14 (Maximality of positive root) Let C be the sequence counting func-
tion for O. Assume that C is not identically zero. Suppose that C(M) = c0r M

0 +∑k
j=1 c jr M

j cos(2πθ j M + ϕ j ) and that c j , θ j , and ϕ j satisfy the standard conditions
(defined earlier) with c0 > 0. Then r0 ≥ r j for j = 1, . . . , k.

Proof Assume that this is not the case, that the positive root is not maximal. We will
show that this leads to a contradiction, namely that we can find an M such that the
counting function C(M) is negative.

Let rmax = max
j

{r j }. The statement that the positive root is not maximal is equiva-

lent to stating that the index of the positive root, 0, is not included in Mrmax (notation
defined at the beginning of this subsection).
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Let

f (M) =
k∑

j=1

c jr
M
j cos(2πθ j M + ϕ j ).

Then, by Lemma 12 (Sum of non-positive terms is negative infinitely often) we may
conclude that there exists δ > 0 and M1 < M2 < · · · such that f (M�) < −δr M�

max for
� = 1, 2, . . ..

Therefore, given a real number u > 0, there exists an M∗ > u from our list such
that f (M∗) < −δr M∗

max. We select a particular u:

u = log
( c0

δ

)

log
(

rmax
r0

) + 1

By solving for ru
max in the definition of u and using the assumption that ru

max
r0

> 1 we
find that

ru
max = c0

δ
ru−1

0 rmax

>
c0

δ
ru

0

or

1 − δ

c0

(
rmax

r0

)u

< 0

We apply this inequality to get

C(M∗) = c0r M∗
0 + f (M∗)

< c0r M∗
0 − δr M∗

max

= c0r M∗
0

(
1 − δ

c0

(
rmax

r0

)M∗)

= c0r M∗
0

(
1 − δ

c0

(
rmax

r0

)M∗−u (
rmax

r0

)u
)

< c0r M∗
0

(
1 − δ

c0

(
rmax

r0

)u)

< 0

Since C is a counting function, it must be nonnegative; the assumption that the positive
root was not maximal has led to a contradiction. Therefore, the positive root is maxi-
mal. ��

Finally this leads to the main theorem:
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7 Proof of main theorem

Proof of Theorem 1 (General Solution to Sequence Counting Problem) Lemma 4
(Solving the recurrence relation—distinct roots) tells us specifically that C satisfies a
recurrence relation. Theorem 6 (Explicit description of sequence counting function—
simple form) gives us most of the relationship but Theorem 14 (Maximality of positive
root) shows that the single purely exponential term dominates the rest, completing the
proof. ��

8 Extension

It is possible to remove the restrictions on the recurrence relation (unique roots of the
characteristic polynomial). We extend Theorem 3 (General solution to a linear homog-
enous difference equation), Theorem 6 (Explicit description of sequence counting
function—simple form), Lemma 12 (Sum of non-positive terms is negative infinitely
often), and Theorem 14 (Maximality of positive root).

Theorem 15 (Extension of General solution to a linear homogenous difference equa-
tion) Suppose C satisfies the linear homogenous difference equation (Eq. 4). For all
positive integers M. Let p(x) = an xn + an−1xn−1 + . . . + a0x0 be the characteristic
polynomial for the difference equation. Then for any solution of Eq. 4 there exists a
unique list of polynomials p1, . . . , pn such that for all positive integers M,

C(M) =
n∑

j=1

p j (M)zM
j .

Proof This extension (and how to find the polynomials) can be found in [6]. ��
Theorem 16 (Extension of Theorem 6) Let C, a function of mass M, count
how many sequences of a finite set of masses have a combined mass of M.
Then C satisfies a mass recurrence relation. Then there exist real constants
k, c0, . . . , ck, r0, . . . , rk, θ1, . . . , θk, ϕ1, . . . , ϕk , satisfying the standard conditions,
and polynomials p1, . . . , pk, whose highest orders have a coefficient of one, such
that

C(M) = c0r M
0 +

k∑

j=1

p j (M)r M
j cos(2πθ j M + ϕ j ).

Proof The proof is nearly identical to that of Theorem 6 (Explicit description of
sequence counting function—simple form) except that we need to use Theorem 15
(Extension of General solution to a linear homogenous difference equation) in place
of Theorem 3 (General solution to a linear homogenous difference equation) and
use slightly modified versions of Lemma 4 (Solving the recurrence relation—dis-
tinct roots)and Lemma 5 (Eigenvalues of conjugate pairs are conjugates), substituting
polynomials for constants. ��
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Lemma 17 (Extension of Lemma 12) Suppose f (M) = ∑k
j=1 c j p j (M)r M

j cos(2πθ j

M+ϕ j ) where c j , θ j , and ϕ j satisfy the standard conditions and p j (M) are polynomi-
als whose highest order term have coefficients of 1. Define rmax = max j {r j }. Define
n j = Degree(p j ) and nmax = max

j∈Mrmax

{n j }. Then there exists δ > 0 and integers

M1 < M2 < · · · such that f (M�) < −δMnmax
� r M�

max for � = 1, 2, . . .

Proof Define cmax = max
j

{c j }. Using ti , the parameterized cosine function, as defined

previously, we can rewrite f as

f (M) =
k∑

i=1

pi (M)r M
i ci cos(2πθ j M + ϕ j )

=
k∑

i=1

pi (M)r M
i ti (M)

=

∑

{i∈Mrmax |ni =nmax}
Mnmaxr M

i ti (M) + ∑

{i∈Mrmax |ni =nmax}
(

pi (M)−Mnmax
)

r M
i ti (M)

+ ∑

{i∈Mrmax |ni <nmax}
pi (M)r M

i ti (M) + ∑

i /∈Mrmax

pi (M)r M
i ti (M)

= f1(M) + f2(M) + f3(M) + f4(M)

where

f1(M) =
∑

{i∈Mrmax |ni =nmax}
Mnmaxr M

i ti (M)

f2(M) =
∑

{i∈Mrmax |ni =nmax}
(

pi (M) − Mnmax
)

r M
i ti (M)

f3(M) =
∑

{i∈Mrmax |ni <nmax}
pi (M)r M

i ti (M)

f4(M) =
∑

i /∈Mrmax

pi (M)r M
i ti (M)

The first three terms all have the same ri , namely rmax, while the last term contains all
other ri terms.

The first term, f1, is the dominant term and can be rewritten as

f1(M) =
∑

{i∈Mrmax |ni =nmax}
Mnmaxr M

i ti (M)

=
∑

{i∈Mrmax |ni =nmax}
Mnmaxr M

maxti (M)
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= Mnmaxr M
max

∑

{i∈Mrmax |ni =nmax}
ti (M)

By Lemma 11 (Sum is negative infinitely often) we know that there exists a δ > 0 and
an infinite sequence of integers, M1 < M2 < · · · such that

∑

j∈Mrmax

t j (M�) < −4δ � = 1, 2, . . .

Thus,

∑

j∈Mrmax

Mnmax
� r M�

j t j (M�) = Mnmax
� r M�

max

∑

j∈Mrmax

t j (M�) � = 1, 2, . . .

< −4Mnmax
� r M�

maxδ

Therefore, given a real number u > 0, all integers M
∗

> u from the sequence above
satisfy

f1(M
∗
) =

∑

i∈Mrmax

r M
∗

i ti (M
∗
)

< −4M
∗nmaxr M

∗
maxδ.

We now want to select a particular u that makes the non-dominant terms f2, f3, f4,
sufficiently small compared to f1.

First, note that f2 differs from f1 only in the polynomial factors (pi (M)− Mnmax),
which have degree at most nmax − 1. Thus, there exists a u2 such that (pi (M) −
Mnmax)r M

i < δ
kcmax

Mnmaxr M
max for all M > u2 and for all i ∈ Mrmax where ni = nmax.

Therefore, for all M > u2,

f2(M) =
∑

{i∈Mrmax |ni =nmax}
(

pi (M) − Mnmax
)

r M
i ti (M)

<
∑

{i∈Mrmax |ni =nmax}
(

pi (M) − Mnmax
)

r M
i cmax

<
∑

{i∈Mrmax |ni =nmax}
δ

k
Mnmaxr M

max

< δMnmaxr M
max

Similarly, because of the maximality of nmax, there exists a u3 such that

f3(M) =
∑

{i∈Mrmax |ni <nmax}
pi (M)r M

i ti (M)

< δMnmaxr M
max
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Finally, because of the maximality of rmax, there exists a u4 such that for all M > u3,

f4(M) =
∑

i /∈Mrmax

pi (M)r M
i ti (M)

< δMnmaxr M
max

We select a u = max(u2, u3, u4).
We apply the properties of u and we get the following for every M∗ > u where

M∗ ∈ {M1, M2, . . .}:
f (M∗) = f1(M∗) + f1(M∗) + f1(M∗) + f1(M∗)

< −4δM∗nmax
r M∗

max + δM∗nmax
r M∗

max + δM∗nmax
r M∗

max + δM∗nmax
r M∗

max

< −δM∗nmax
r M∗

max

��
Theorem 18 (Complete Extension of General Solution to Sequence Counting Prob-
lem) Under the conditions of Theorem 16 (Extension of Theorem 6), r0 ≥ r j for
j = 1, . . . , k.

Proof Assume that this is not the case, that the positive root is not maximal. We will
show that this leads to a contradiction, namely that we can find an M such that the
counting function C(M) is negative.

Let rmax = max
j

{r j }. The statement that the positive root is not maximal is equiva-

lent to stating that the index of the positive root, 0, is not included in Mrmax (notation
defined at the beginning of this subsection).

Let

f (M) =
k∑

j=1

p j (M)r M
j c j cos(2πθ j M + ϕ j ).

Then, by Lemma 17 (Extension of Lemma 12) we may conclude that there exists
δ > 0 and M1 < M2 < · · · such that f (M�) < −δMnmax

� r M�
max for � = 1, 2, . . .

We now choose a particular member M
∗
, from our list with the property that

M
∗

> max

⎧
⎨

⎩1,
log

( c0
δ

)

log
(

rmax
r0

) + 1

⎫
⎬

⎭

By solving for r M
∗

max in the definition of u and using the assumption that rmax
r0

> 1 we
find that

r M
∗

max >
c0

δ
r M

∗−1
0 rmax

>
c0

δ
r M

∗
0
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or

1 − δ

c0

(
rmax

r0

)M
∗

< 0

We apply this inequality (and the fact that M
∗

> 1) to get

C(M
∗
) = c0r M

∗
0 + f (M

∗
)

< c0r M
∗

0 − δr M
∗

max M
∗
nmax

< c0r M
∗

0 − δr M
∗

max

= c0r M
∗

0

⎛

⎝1 − δ

c0

(
rmax

r0

)M
∗ ⎞

⎠

< 0

Since C is a counting function, it must be nonnegative; the assumption that the positive
root was not maximal has led to a contradiction. Therefore, the positive root is maxi-
mal. ��
Example 19 (Extension of General Solution is Necessary) Suppose we have an alpha-
bet A = {a1, a2, a3, a4, a5} and define the masses m1 = m2 = m3 = 4 and m4 =
m5 = 6. Then the mass recurrence relation is C(M) = 3C(M − 4)+ 2C(M − 6) and
the characteristic polynomial is p(x) = x6 − 3x2 − 2. The roots of p are ±√

2 and
±i (twice). The explicit form of C is

C(M) = c0
√

2
M + c1

(
−√

2
)M + c2 cos

(π

2
M + ϕ2

)
+ c3 M cos

(π

2
M + ϕ3

)

= c0
√

2
M + c1

(√
2
)M

cos(π M + 0) + c2 cos
(π

2
M + ϕ2

)

+c3 M cos
(π

2
M + ϕ3

)
.

Note, in particular, the last term, which is linear in M ; it is of the form
c3q(M)1M cos(θ M + ϕ) where q(M) = M , a polynomial of degree 1 in M .

9 Applications

As an application of the above work, we analyze the mass distributions of peptides/pro-
teins. First we recognize that the objects forming the alphabet are the residues of the
amino acids. Proposition 2 (Mass recurrence relation) defines the relationship for this
special case as

C(M) = C(M − 57) + C(M − 71) + C(M − 87) + C(M − 97) + C(M − 99)

+C(M − 101) + C(M − 103) + 2C(M − 113) + C(M − 115)
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Fig. 1 Comparison of theoretical to empirical mass distributions. The theoretical mass distribution of all
peptides in the mass range of 300–500 Da has a wave pattern similar to that of the distribution for human
and yeast peptides

+C(M − 131) + C(M − 137) + 2C(M − 128) + C(M − 129)

+C(M − 147) + C(M − 156) + C(M − 163) + C(M − 186),

where the numbers 57, 71, 87, . . ., are the masses of amino acid residues measured in
Daltons, to the nearest integer. This allows us to analyze the mass distribution of all
possible (theoretical) peptides with mass distributions of peptides that appear within
a given organism (see Fig. 1).

Next, we determine the characteristic polynomial,

x186 − x129 − x115 − x99 − x89 − x87 − x85 − x83 − 2x73

−x72 − x71 − 2x58 − x57 − x55 − x49 − x39 − x30 − x23 − x0

We can then approximate the roots (Fig. 2) of the characteristic polynomial using a
solver, such as the “roots” function in MATLAB [12]. In this case, as in all we have
observed in biological applications, the characteristic polynomial has distinct roots.
Therefore, we can apply Theorem 1 (General Solution to Sequence Counting Prob-
lem), yielding an exponential term summed with a collection of terms that contain a
periodic function multiplied by an exponential function, the former dominating the
latter (Fig. 3). If we write the exponential terms in Eq. 2 by powers of 2, then we can
easily read the doubling time of each term. Furthermore, if we write the frequencies
θ j in terms of wavelength, then we can emphasize the period of each term. With these
conventions, the first three terms are

123



J Math Chem (2012) 50:1458–1483 1481

Fig. 2 Roots and eigenvalues of characteristic polynomial for peptides. a The roots of the characteristic
polynomial for the recurrence relation that uses the integer residue masses of amino acids. As predicted,
there is exactly one positive root and it has the largest magnitude (blue dot). The red dots correspond to the
roots of the next largest magnitude; their period is 14.28 Da. b The constant terms in Eq. 5 (Color figure
online)
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Fig. 3 Comparison of first two terms to actual distribution. The two dominant terms of Eq. 2 for the peptide
problem are increasingly accurate as we change the mass region being examined

C(M) = 1

95.238
2

M
24.67 + 1

47.04
2

M
27.53 cos

(
1.032 +

(
360

14.28

)
M

)

+ 1

45.41
2

M
32.67 cos

(
13.676 +

(
360

2.023

)
M

)

+ · · ·

In total, there is one purely exponential term (which doubles in size every 24.67 Da)
and 93 periodic terms we can consider, each of which gives a different periodicity and
dominance in the distribution of masses. However, we found that the first few terms
are sufficient to approximate the distribution of peptides, at least when rounding the
amino acid masses to the nearest Dalton. In particular, the dominant periodic term has
a period of 14.28 Da. Solutions for higher mass accuracy are possible by changing
units. More examples and details are available in [5].

We expect that these findings could improve estimates of distributions, thus improv-
ing a class of algorithms that score peptide identifications in mass spectrometry [13–
15], those that require knowledge of the number of possible peptide sequences within
a particular mass range.
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